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Abstract

In this paper, a novel method for introducing multiplex data relationships to the SVM optimization process
is presented. Different properties about the training data are encoded in graph structures, in the form of
pairwise data relationships. Then, they are incorporated to the SVM optimization problem, as modified
graph-regularized base kernels, each highlighting a different property about the training data. The con-
tribution of each graph-regularized kernel to the SVM classification problem, is estimated automatically.
Thereby, the solution of the proposed modified SVM optimization problem lies in a regularized space, where
data similarity is expressed by a linear combination of multiple single-graph regularized kernels. The pro-
posed method exploits and extends the findings of Multiple Kernel Learning and graph-based SVM method
families. It is shown that the available kernel options for the former can be broadened, and the exhaustive
parameter tuning for the latter can be eliminated. Moreover, both method families can be considered as
special cases of the proposed formulation, hereafter. Our experimental evaluation in visual data classification
problems denote the superiority of the proposed method. The obtained classification performance gains can
be explained by the exploitation of multiplex data relationships, during the classifier optimization process.

Keywords: Multiplex data relationships, Support Vector Machine, Graph-based Regularization, Multiple
Kernel Learning.

1. Introduction

Computer vision/visual analysis methods have
found industrial applications in several areas such
as in robotic systems e.g., unmanned aerial ve-
hicles and virtual reality, and their growth over
the past few years have been immense. Such vi-
sual analysis applications including face recognition,
object recognition, human action recognition, hu-
man/object tracking and many other applications,
are commonly addressed as classification problems
[1, 2]. One of the most widely studied classifica-
tion methods in visual analysis applications is the

Support Vector Machines (SVM) classifier. SVM-
based methods and extensions have been employed
in mathematical/engineering problems including one-
class and multiclass classification, regression and
semi-supervised learning [3, 4, 5, 6]. In its simplest
form, SVM learns from labeled data examples orig-
inating from two classes, the hyperplane that sepa-
rates them with the maximum margin, at the train-
ing data input (or feature) space. After its first pro-
posal, SVM has been extended to determine deci-
sion functions in feature spaces obtained by employ-
ing non-linear data mappings, where data similarity
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is implicitly expressed by a kernel function. The ex-
plicit data mapping is not required to be known, if
the adopted kernel function satisfies Mercer condi-
tions [7]. Common practices for determining a fea-
ture space where SVM provides satisfactory perfor-
mance to a given classification/regression problem,
involve selecting a kernel function from a set of widely
adopted kernel functions e.g., polynomial, sigmoid,
Radial Basis Function (RBF), and thereby tuning
the corresponding hyperparameters using e.g., cross
validation, based on previous knowledge about the
problem at hand. In every case, the performance of
SVM heavily depends on the adopted kernel function
choice, since the optimal solution for each problem
might lie in unknown feature spaces.

In order to determine the optimal feature space
for SVM operation, Multiple Kernel Learning (MKL)
methods have been proposed. Their basic assumption
is that the optimal underlying data mapping, i.e., the
optimal kernel function, is a weighted combination
(either linear or non-linear) of multiple kernel func-
tions, the so-called basis kernels [8, 9, 10, 11]. The
participation of each kernel to the optimal solution is
determined by the kernel weights. The weights of the
basis kernels are estimated in an automated fashion
along with the SVM hyperplane, by an additional op-
timization procedure (e.g., single-step sequential op-
timization, two-step optimization). Standard MKL
methods employ Lp or L1 regularization in their opti-
mization procedure, with the latter producing sparse
solutions and the former providing fast convergence
[12, 13]. Besides the important theoretical advance-
ments of MKL methods, only few base kernel com-
binations have found to be successful in realistic ap-
plications, i.e., MKL methods method might suffer
from overfitting issues or limited performance gains
[11, 12, 13].

A different approach for improving classification
performance, are methods that introduce additional
optimization criteria to the standard SVM optimiza-
tion problem, such as discriminant/manifold learning
[6]. That is, alternative optimization problems have
been proposed in order to determine SVM solutions
in regularized spaces, expressed by a geometric trans-
formation of the derived SVM hyperplane with the
adopted criteria. For example, employing discrimin-

inant learning information e.g., within-class variance
information [14], promotes hyperplanes that span
along low data variance directions [15, 16]. Alterna-
tively, methods initially proposed for semi-supervised
learning, by integrating SVM and manifold learning
[6], have shown that enhanced classification perfor-
mance can be obtained for the supervised learning
case as well, by exploiting k−Nearest Neighborhood
(k-NN) graphs. Since advances in graph-theory al-
low several manifold/discriminant learning criteria to
be expressed using graph-based representation [17],
methods incorporating the undelying data geome-
try in the SVM optimization problem can be imple-
mented through generic graph-based SVM methods
[18, 19, 20]. The adoption of generic graph struc-
tures within the SVM optimization process, contain-
ing e.g., intrinsic (within-class), or between-class data
relationships, promotes solutions that are less prone
to over-fitting. The disadvantage of graph-based
SVM methods is that deriving the optimal classifica-
tion space requires the evaluation of different graph
settings, as well as tuning the additional introduced
hyperparameters.

In visual analysis applications, MKL and graph-
based SVM methods have been succesfully employed
over the past few years. Their success can be
mainly attributed to the expoitation of the multi-
modal/multiplex structure of images and video data
[21]. The multimodal/multiplex structrure can be
related to spatial and temporal information, infor-
mation extracted by multiple descriptor types, or
even noise generated by camera movement, multiple
viewing angles and illumination changes. In order to
handle such information, adopting more than a sin-
gle kernel [11], or adding more than a single graph
[22, 23, 24, 25, 26], is beneficial to performance, since
it enables more accurate representation of the un-
derlying multiplex data relationships. Our work was
inspired by the successful implementation of multi-
ple graphs in related application scenarios, e.g., la-
bel propagation [22]. To this end, we have devised a
method that introduces multiple graphs to the SVM
optimization problem, by exploiting the intuitions of
both MKL and graph-based SVM method families.

In this paper, a novel classification method that in-
corporates multiplex data relationships to the SVM
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optimization process, is presented. Multiplex data
relationships are encoded in the form of multiple
graph structures, containing pairwise data relation-
ships, each corresponding to a specific data property.
We propose a modified SVM optimization problem,
that incorporates this information to its optimiza-
tion problem. As an effect, the generated SVM hy-
perplane is driven to directions where the most dis-
criminant training data properties are highlighted.
From our derivations, it is shown that the solution of
the proposed optimization problem lies in a modified
space, where data similarity is explicitly determined
by a linear combination of graph-regularized kernel
matrices. Moreover, it is proven that both Multi-
ple Kernel Learning and Graph-based SVM method
families method families can be formulated as special
cases of the proposed method, hereafter. Finally, the
proposed method exploits and extends the findings
of Multiple Kernel Learning and graph-based SVM
method families, by broadening the available kernel
options for the former, and eliminating exhaustive
parameter tuning for the latter.

2. Related Work

In this section, we overview the preliminary ma-
terial required to introduce the proposed method.
Section 2.1 contains the description of the generic
MKL-SVM optimization problem and Section 2.2
contains an overview of the recently proposed Graph-
Embedded Support Vector Machines, exploiting a
single graph in its optimization problem for regular-
ization purposes.

2.1. Multiple Kernel Learning Support Vector Ma-
chines

Let a set of labeled data S = {xi, yi}, i =
1, . . . , N sampled from X × Y, where X ∈ RD and
Y ∈ {−1, 1}, that is employed in order to train
an SVM classifier. MKL-SVM methods optimize
for implicitely determining the optimal feature space
for solving the SVM optimization problem. Sim-
ilarity in that space is reproduced by a linear or
non-linear combination of multiple kernel functions
[10, 13, 27, 28, 29, 30]. Let M mapping functions

φm(·) 7→ Hm,m = 1, . . . ,M that have been employed
as base data mappings. Similarity in the respective
spaces is reproduced by the associated base kernel
function κm(·, ·) = φm(·)Tφm(·), and Hm is a Re-
producing Kernel Hilbert Space (RKHS). Assuming
M base kernels have been linearly combined, then
the obtained space H is also a RKHS, reproduced by
kernel κ(·, ·). Similarity in that space can be calcu-
lated explicitly by a weighted summation of the base
kernels, as follows:

κ(·, ·) =

M∑
m=1

µmκm(·, ·), (1)

where κm is the m−th kernel function weighted by a
parameter µm ≥ 0.

In order to learn the kernel weighting parameters
µm and the optimal SVM hyperplane at the same
time, the MKL-SVM optimization problem is formed
as a max-min optimization problem:

max
α

min
µ

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj

M∑
m=1

µmκm(xi,xj)

(2)

s. t. 0 ≤ αi ≤ c and

M∑
m=1

µp
m = 1,

where a is the support vector coefficient vector and
p ≥ 1 is a parameter that affects the sparsity of the
obtained kernel weighting parameters. The above de-
fined optimization problem can be solved sequentially
or in an iterative manner, keeping a or µ as con-
stants in the respective optimization steps. Assum-
ing that the kernel weighting parameters µ have been
determined, then K =

∑M
m=1 µmKm is the kernel

matrix that can be employed for solving the stan-
dard SVM classification problem. According to Rep-
resenter Theorem [7], the relevant SVM hyperplane
w = Φa that lies in the RKHS H, can be recon-
structed by the determined support vector coefficient
vector a and the arbitrary training data representa-
tions Φ ∈ H. Data similarity in that space can only
be reproduced by the base kernel combination, since
the kernel K cannot be calculated, otherwise.
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After training the classifier, a test sample x is clas-
sified to the positive or negative training class, ac-
cording to the outputs of the following decision func-
tion:

f(x) =

N∑
i=1

yiαi

M∑
m=1

µmκm(xi,x) + b, (3)

where b is the standard SVM bias term. Finally,
the test sample is classified to the positive class if
sign(f(x)) ≥ 0 or the negative class, otherwise.

2.2. Support Vector Machines exploiting geometric
data relationships

Graph-based SVM methods exploit data relation-
ships expressed by a single graph in the SVM op-
timization problem [18, 20]. To this end, it is as-
sumed that the training data X = {x1, . . . ,xN}
have been embedded in an undirected weighted graph
G = {X ,W}, where W ∈ RN×N is the graph weight
matrix. It should be noted that non-linear data re-
lationships might be expressed as well, by employing
the explicit data mappings in a feature space i.e.,
X = {φ(x1), . . . , φ(xN )}, where φ(·) : RD 7→ H is
mapping function. In either case, the matrix S can
be employed to preserve data relationships expressed
by G, in the feature space H. The definition of S is
the following:

S =
1

2

N∑
i=1

N∑
j=1

Wij (φ(xi)− φ(xj)) (φ(xi)− φ(xj))
T

=ΦLΦT , (4)

where L ∈ RN×N is the graph Laplacian matrix de-
fined by L = D − W , where D ∈ RN×N is the
(diagonal) degree matrix having elements [D]ii =∑

i 6=j [W ]ij , i = 1, . . . , N , and Φ is a matrix con-
taining the data representations in H. Depending
on the exploited graph type [17], L can be used in
order to describe geometric data relationships em-
ployed in several dimensionality reduction and mani-
fold learning techniques, such as Principal Compo-
nent Analysis (PCA), Linear Discriminant Analy-
sis (LDA), Clustering-based Discriminant Analysis
(CDA), Laplacian Eigenmap (LE) and Locally Linear

Embedding (LLE) [17, 19, 20]. Finally, the Graph-
Embedded SVM (GE-SVM) optimization problem is
defined as follows [18, 20]:

min
w,ξ,b

1

2
‖w‖2 +

λ

2
wTSw + c

N∑
i=1

ξi + b, (5)

s. t. yi
(
wTφ(xi) + b

)
≤ 1− ξi, i = 1, . . . , N,

ξi ≥ 0,

while an additional constraint wTSw > 0 is also im-
posed demanding that the matrix S is positive semi-
definite. Compared to standard SVM, an additional
parameter λ ≥ 0 is introduced, that controls the
amount of regularization introduced by the second
term. GE-SVM can be considered a generalization
of other SVM-based methods, e.g., given a value of
λ = 0, the method degenerates to standard SVM.
Depending on the definition of S, GE-SVM is equiv-
alent to previously devised regularized SVM methods
such as the Minimum Variance SVM [15] or Lapla-
cian SVM [6].

The equivalent dual problem is defined as follows:

max
α

N∑
i=1

αi− (6)

−1

2

N∑
i=1

N∑
j=1

αiαjyiyjφ(xi)
T (I + λS)

−1
φ(xj),

s. t. 0 ≤ αi ≤ c.

Finally, in order to classify a test sample, the stan-
dard SVM decision function is employed, by employ-
ing a regularized kernel of the following form:

κ̃(xi,xj) = φ(xi)
T (I + λS)

−1
φ(xj). (7)

GE-SVM can be solved using standard SVM im-
plementations, by replacing the standard kernel ma-
trix with the one defined above. As have been shown
in recent work, GE-SVM outperforms the standard
SVM [18, 20], in almost every SVM classification
task, including one-class classification [19], and in
some cases by a large extent. However, the increased
classification performance comes with the cost of in-
creased computational complexity, related to ineffi-
cient parameter tuning. The required parameters to
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be tuned include the standard SVM parameter c and
the introduced parameter λ, and moreover, depend-
ing on the adopted graph type, even more hyperpa-
rameters are required to be tuned as as well, e.g., k
for the kNN graph case. Graph-hyperparameter se-
lection is even more complex for the state-of-the-art
performing positive and negative graph exploitation
case [20]. The demanding computational complexity
of GE-SVM limit its exploitation options in realistic
application scenarios.

3. Multiplex data relationships in Support
Vector Machines

In this Section, we describe in detail the proposed
method, which extends the standard SVM prob-
lem, by incorporating additional optimization crite-
ria, in addition to maximizing the classification mar-
gin. These criteria include incorporating geomet-
ric or semantic information about the training data,
e.g., within-class variance information, local geomet-
ric data relationships information, expressed with
multiple graph structures, i.e., multiplex data rela-
tionships. Their detailed mathematical description
is given in Section 3.1. The introduced terms have
the effect of projecting the SVM hyperplane in such
directions, where the respective information of each
additional term is emphasized. Moreover, a weighting
parameter is introduced, that determines the contri-
bution of each term to the final solution. From our
derivations, analytically described in Subsection 3.2,
it is proven that each of the proposed additional opti-
mization term can also be expressed with a separate
regularized kernel matrix. Thus, the proposed opti-
mization problem can be solved using standard MKL-
SVM methods, only by employing graph-regularized
kernel matrices as base kernels, instead of standard
ones, while the optimal weighting parameters are op-
timally estimated. Finally, computational complex-
ity of the proposed method, as well as its generaliza-
tion properties are discussed in Subsection 3.3.

3.1. Multiplex data relationships

Multiplex data relationships can be expressed by
using a set of graphs, each describing a different pair-

wise property about the training set. Pairwise prop-
erties of the training data may include e.g., local geo-
metric data information (encoded by kNN graphs) or
global geometric data information (encoded in fully
connected graphs). In addition, hand-crafted graph
types or graphs that might be introduced in the fu-
ture could be employed, as well. Let us denote by
Gm = {X ,Wm},m = 1, . . . ,M the m-th graph with
Wm its corresponding graph weight matrix, contain-
ing the weights of the connections between the graph
vertices X = {φ(x1), . . . , φ(xN )}.

In order to express local geometric data informa-
tion for our multiplex graph paradigm, let us denote
by Gl a kNN graph. Also let Ni be the neighborhood
of each vertex xi, connecting it with the k most sim-
ilar vectors. Then, the corresponding graph weights
can be initiated with a heat kernel function:

W l
ij =

{
exp

(
−γ||xi − xj ||22

)
, if xj ∈ Ni

0, otherwise,
(8)

where γ is a free parameter that scales the Euclidean
distances between the graph vertices xi and xj . Let
Sl encode the local geometry of the training data,
defined in a similar manner as in (4):

Sl = ΦLlΦ
T , (9)

where Ll is the corresponding Laplacian matrix.

In order to encode the global geometry of the train-
ing data, fully connected graphs (k = N) of similar
definition could be employed. Alternatively, we ex-
ploit a different fully connected graph type defini-
tion. From a disciminant analysis point of view [17],
we would require that items belonging to the same
class (e.g., class c, c = 1, . . . , C) to be connected with
equal weights, expressed in the graph Gw, using the
following weight matrix:

Ww
ij = 1/Nc, if yi = yj , (10)

where Nc is the number of items belonging to the
c−th class. In fact, the corresponding matrix Sw

that expresses global geometric data relationships as
in equation (4), is the within-class scatter matrix, as
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can be shown below:

Sw =

C∑
c=1

Nc∑
i=1

(φc
i − φ̄c)(φc

i − φ̄c)T =

= Φ

(
I −

C∑
c=1

1

Nc
ece

T
c

)
ΦT = ΦLwΦT , (11)

where c is an index denoting the class of sample xi,
φi is a shorthand for φ(xi), φ̄c is the mean sample
of class c in the feature space, ec ∈ RN is a vector
of ones in the positions where yi = c, or zeros, oth-
erwise, and Lw is the corresponding graph Laplacian
matrix.

In the following Subsection, we describe how mul-
tiplex data relationships are introduced to the SVM
optimization problem.

3.2. Proposed method
The proposed method aims at generating a deci-

sion function in a space where multiplex data re-
lationships are emphasized. In order to model the
multiple data relationships, we employ the matri-
ces Sm,m = 1, . . . ,M , where the m−th matrix en-
code the data properties that are described by the
m−th graph type. Then, a decision function can be
obtained, by combining SVM hyperplanes wm that
have been regularized with the corresponding matrix
Sm, where the introduced regularization effect is con-
trolled by the parameters λm > 0. Finally, multiplex
data relationships are weighted according to their ef-
fect in the final decision function with the parame-
ters µm. In order to determine the weighting parame-
ters µm, and obtain the decision function at the same
time, we propose the following optimization problem:

min
{w},ξ,b,µ

1

2

M∑
m=1

µ−pm

(
‖wm‖2 + λmw

T
mSmwm

)
+

+ c

N∑
i=1

ξi + b, (12)

s. t.

M∑
m=1

yi
(
wT

mφm(xi) + b
)
≤ 1− ξi,

ξi ≥ 0,

M∑
m=1

µp
m = 1, µm > 0,

where each hyperplane wm, as well as each of the
matrices Sm are defined in the feature space Hm,
and p ≥ 1 is a parameter that affects the sparsity of
the solution, similar to MKL methods. For simplicity
reasons, we consider the case where p = 1, hereafter.
The Lagrangian function corresponding to the pro-
posed optimization problem is of the following form:

L =
1

2

M∑
m=1

1

µm
wT

m (I + λmSm)wm + b−

−
N∑
i=1

αi

(
M∑

m=1

yi
(
wT

mφm(xi) + b
)
− 1 + ξi

)
+

+

N∑
i=1

(c− βi)ξi −
M∑

m=1

γmµm − δ

(
M∑

m=1

µm − 1

)
,

(13)

where αi, βi, γm and δ are the Lagrange multipliers
corresponding to the constraints of (12) and I is an
identity matrix of appropriate dimensions.

By setting the partial derivative of the Lagrangian
with respect to each hyperplane equal to zero, ∂L

∂wm
=

0, we obtain:

1

µm
(I + λmSm)wm =

N∑
i=1

αiyiφ(xi). (14)

By setting the partial derivatives of L with respect to
ξi and β equal to zero, i.e., ∂L

∂ξ = 0 and ∂L
∂b = 0, we

obtain βi = c − αi and
∑N

i=1 αiyi = 1, respectively.
Then, by replacing back in the Lagrangian, the pro-
posed optimization problem takes the following form:

max
α

min
µ

N∑
i=1

αi− (15)

−1

2

N∑
i=1

N∑
j=1

αiαjyiyj

(
M∑

m=1

µmφm(xi)
T (I + λmSm)

−1
φm(xj)

)

s. t. 0 ≤ αi ≤ c and

M∑
m=1

µm = 1.

We observe that the above defined optimization
problem is similar to the standard SVM optimiza-
tion problem, if we employ a kernel q(xi,xj) =
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∑M
m=1 µmφm(xi)

T (I + λmSm)
−1
φm(xj). This ker-

nel can be explicitly determined by a linear combina-
tion of multiple base kernels κ̃m, weighted by param-
eters µm, such that:

q(xi,xj) =

M∑
m=1

µmκ̃m(xi,xj), (16)

where κ̃m(xi,xj) = φm(xi)
T (I + λmSm)

−1
φm(xj)

contains data similarity in the space where the m−th
training data property is emphasized. We recall that
Sm = ΦLmΦT , where Lm is the Laplacian ma-
trix of the m−th graph. In order to obtain the
base kernel matrix, we first calculate the inversion
(I + λmSm)

−1
, by exploiting the Woodbury matrix

inversion identity [31]:(
I + λmΦLmΦT

)−1
= I−Φ

(
1

λm
L−1m + ΦTΦ

)−1
ΦT ,

(17)
where ΦTΦ = K, which is a Kernel matrix that ex-
presses similarity in the space associated with the
employed mapping function. Moreover, this formula
can be further simplified by exploiting the Searle ma-
trix inversion identity [31]:(

1

λm
L−1m +K

)−1
= K−1

(
λmLm +K−1

)−1
λmLm,

(18)
Finally, each regularized kernel matrix can be explic-
itly calculated as follows:

K̃m = ΦT
[
I −ΦK−1

(
λmLm +K−1

)−1
λmLΦT

]
Φ =

= K −
(
λmLm +K−1

)−1
λmLmK =

=
[
I −

(
λmLm +K−1

)−1
λmLm

]
K. (19)

By replacing the calculated base kernels back to the
Lagrangian, we obtain a MKL-SVM optimization
problem:

max
α

min
µ

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj

M∑
m=1

µmκ̃m(xi,xj)

(20)

s. t. 0 ≤ αi ≤ c and

M∑
m=1

µm = 1,

which is similar to the optimization problem defined
in (2), only by replacing the base kernels Km with
K̃m. In order to solve this optimization problem,
any MKL-SVM method can be employed [12]. To
this end, we have employed the recently proposed
soft-margin MKL-SVM method [11] in all our ex-
periments, since it outperforms other widely adopted
MKL methods [32, 33] in video classification prob-
lems, by providing an efficient compromise between
sparse solutions and fast convergence. That is, the
min-max optimization problem is broken into two
quadratic programming optimization problems that
are solved sequentially, one for the standard SVM,
and a separate soft-margin optimization one for de-
termining the parameters µm. Finally, in order to
classify a test sample, we employ the MKL decision
function (3), using the appropriate matrices.

3.3. Discussion

The proposed method employs multiple graphs
for regularization purposes, in the form of multiple
single-graph regularized kernels. The optimization
problem is formulated as a MKL-SVM optimization
problem. The advantage of our approach is the elim-
ination of exhaustive parameter fine-tuning, related
to graph-hyper-parameters. Their effect, along with
the parameter λ, are implicitly determined only by
optimally calculating the kernel contribution param-
eters µm, inside a separate optimization problem. In
order to demonstrate how important is this property,
let us consider the following example. Let a set of
M kNN graphs with weights initiated with an RBF
heat kernel function, that are available to be exploit
in the SVM optimization process. The parameters
for each graph include the number of nearest neigh-
bors k and the RBF parameter γk. By introducing
them in the SVM problem, we have another addi-
tional RBF γ parameter for the SVM kernel func-
tion, the amount of the introduced regularization λ
and the standard SVM parameter c, totaling 5 pa-
rameters. Without an optimization procedure, i.e.,
the proposed approach, determining the optimal pa-
rameter combination with traditional methods, e.g.,
grid search, is computationally intensive.

On the other hand, we consider the complexity of
the proposed method. Since the proposed method
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can be solved using any MKL-SVM solver, its com-
putational complexity in the training phase is equal
to the complexity of the solver, along with the com-
plexity required to calculate the regularized basek-
ernels using equation (19). Let us consider that all
of the employed kernels are regularized versions of
the same standard basekernel K (e.g., RBF), having
size equal to N × N , where N is the number of the
employed training data. First, the basekernels need
to calculated and inverted. Then, in order to ob-
tain each regularized basekernel version, a Laplacian
matrix Lm of size N × N needs to be determined.
Then, an additional inversion of the quantity inside
the parenthesis of size N×N is required. Finally, this
quantity is multiplied with Lm, and this result is then
saved and stored, since this result will be employed
for deriving the regularized basekernel at the infer-
ence stage, as well. Therefore, the complexity of the
training stage is equal to the complexity of the MKL-
SVM solver, plus two inversions of size N × N , the
calculation of the Laplacian matrix and two matrix
multiplications of size N ×N for each basekernel. In
the inference stage, the computational complexity is
equal to standard MKL-SVM, plus one matrix multi-
plication for each of the resulted basekernels. Thus,
assuming hardware restrictions e.g., embedded sys-
tems, adopting sparse solutions is preferred.

Finally, another aspect of the proposed method in-
cludes its generalization features. The proposed for-
mulation is general, since related methods may be im-
plemented as special cases of the proposed method,
hereafter. That can be achieved by changing the
basekernel matrix combination. For example, by re-
placing the derived kernel matrix Q with the stan-
dard SVM kernel matrix K and µ = 1, the proposed
method degenerates to standard SVM. By using a
set of standard SVM kernel matrices derived by em-
ploying several mapping functions, or similar map-
ping functions with different parameters, the pro-
posed method represents the basic MKL formulation.
Finally, by introducing only a single graph (µ = 1) in
the SVM optimization process, the proposed method
degenerates to GE-SVM.

4. Experiments

In order to evaluate the performance of the pro-
posed method, we have conducted experiments in vi-
sual analysis classification problems. To this end,
we have employed publicly available datasets for
face recognition, object classification, human action
recognition. The employed datasets were carefully
selected to demonstrate the effectiveness of the pro-
posed method in various circumstances, i.e., various
type of input is given to the proposed method, in-
cluding pre-extracted feature vectors, deep features,
pre-computed kernel matrices, features having mini-
mal pre-processing i.e., pixel luminosities and hand-
crafted features. Since all employed datasets are well
balanced in terms of instances per class, for both
training and testing purposes, the Classification Rate
(CR) was employed as performance metric.

Along with the proposed method, we have also im-
plemented the standard SVM [5], the GE-SVM [18]
and MKL-SVM [11]. For comparison fairness, the
same SVM solver was employed for all methods [34],
and the parameter settings were also set to be equal
for all methods, where applicable. Our experimen-
tal platform was a PC with 32GB of RAM on a i7
processor, using a Matlab implementation. In all our
experiments, we have employed the kernel versions
of the competing algorithms for each experiment, by
employing the RBF kernel:

k(xi,xj) = exp
(
−γ‖xi − xj‖22

)
, (21)

where γ = 1/2aσ2, σ2 is the standard deviation of
the training data, which is the normal scaling factor
and the optimal γ was determined by setting values
to a equal to a = −1, 0, 0.5, 1, 5, 10. The SVM pa-
rameter c was set equal to 10` , ` = −2, . . . , 6. The
optimal parameter settings for each method were de-
termined using a 5−fold cross validation procedure
on the training set. In MKL-SVM, all RBF kernel
matrices were employed in the training phase. Re-
garding GE-SVM, the additional parameter λ was
set equal to 10s, s = −3, . . . , 3, and two types of reg-
ularizers were employed, i.e., Sl from equation (9)
and Sw from equation (11). The kNN graph being
employed in Sl was containing local geometric data
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relationships from k = 5, 10, 15 neighbors. In GE-
SVM, the best performing regularized kernel during
cross validation was employed for testing the classi-
fier. All of the constructed regularized kernels con-
structed for GE-SVM were also employed in the pro-
posed method, with the difference that only a value
λm = 10−1 was used, since its effects are controlled
by the parameters µm.

Detailed description for the experimental protocol
followed for each classification problem is analytically
described in Sections 4.1, 4.2 and 4.3, respectively.
Finally, we describe the conducted significance anal-
ysis of the obtained results in Section 4.4.

4.1. Experiments in face recognition

In our experiments in face recognition, we have
employed the PubFig+LFW [35], AR [36], Yale [37]
and ORL [38] datasets. The PubFig+LFW [35] is a
benchmark dataset for open-universe face identifica-
tion, consisting of 13, 002 facial images representing
83 individuals from PubFig83, divided into 2/3 train-
ing (8720 faces) and 1/3 testing set (4, 282 faces), as
well as 12, 066 images representing over 5, 000 faces
which form the distractor set from LFW. For each
facial image, the extracted features include the His-
togram of Oriented Gradients (HOG), Local Binary
Patterns (LBP) and Gabor wavelet features. The
extracted features were reduced to 2048 dimensions
with Principal Component Analysis (PCA), from
which we only employed the first 1536 dimensions,
as adviced by the dataset providers [35]).

Moreover, we have also employed classic face recog-
nition datasets, i.e. the AR [36], Yale [37] and ORL
[38] datasets, containing 2600, and 2432 and 400
frontal facial images belonging to 100, 38 and 40 sub-
jects, respectively. As feature vectors, we have em-
ployed the grayscale resized images to 40× 30 pixels,
and vectorized them so that to produce a D = 1200
dimensional vector for each facial image. Since no
standard experimental protocol have been defined on
these datasets, we have performed a 5−fold cross-
validation procedure and report the average obtained
performance among the folds.

Experimental results are drawn in Table 1. As
can be seen, the proposed method outperformed all

competing methods in every case, in terms of clas-
sification accuracy. More specifically, by observing
the performance of all competing methods in Pub-
Fig+LFW dataset, whose feature vectors include in-
formation from hand-crafted descriptors, employing
Multiple Kernel matrices seem to have been beneficial
to classification performance. This can be explained
by the fact that the extracted features may lie in
multiple distributions, not modeled adequately by a
single normal distribution (i.e., the standard SVM
case), or even a regularized one (i.e., the GE-SVM
case). The performance of MKL-SVM denoted that
exploiting multiple distributions for modeling data
similarity was beneficial to performance. In every
case, the proposed method outperformed the compe-
tition, by exploiting the additional global and local
geometric particularities of each class, modeled by
the added graph structures. This information acted
as an advanced regularizer to the solution, offering
more accurate feature representation, in comparison
with the competition.

In our experiments on classic face recognition
datasets, we have observed that employing the MKL-
SVM, seem to have not influenced positively the clas-
sification performance, maybe related to over-fitting
issues. This effect is supported by the performance
of GE-SVM, which outperformed the standard SVM
and MKL-SVM, by having one graph regularizing the
classification space. However, the proposed method
was able to alleviate the negative over-fitting effects,
by optimally determining the most efficient regular-
ized kernel combination.

Table 1: Classification rates (CR) in Face Recognition datasets

Algorithm/Dataset PubFig+LFW ORL AR Yale
SVM 36.24 98.75 99.11 97.94
GE-SVM 34.35 98.75 99.19 97.94
MKL-SVM 84.17 98.75 90.57 96.08
PROPOSED 88.77 99.25 99.42 98.06

4.2. Experiments in object classification

In our experiments on object classification, we have
employed the CIFAR-100 [39] and Caltech101 [40]
datasets.
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In CIFAR-100 dataset, we have employed pre-
extracted features [41]. That is, the feature vectors
were computed by performing a forward pass to a
pre-trained CNN network from the fully connected
layer ‘fc2’, having feature dimensionality D = 255,
based on a Hadamard coding preprocessing [41, 42].
We have employed the small dataset version, which
includes 5000 training and 1000 testing samples, be-
longing to 10 classes, corresponding to ones prede-
fined by the dataset providers [39]. We have con-
structed the RBF kernel matrices by employing the
above mentioned features, and employed them to the
SVM and MKL-SVM methods. Their regularized al-
ternatives were employed for the GE-SVM and the
proposed method. In Caltech101 dataset, we have
employed 10 pre-computed kernel matrices [43], de-
rived from employing the Geometric blur [44], dense
visual words [45] and Self-similarity [46] descriptors.

In standard SVM, we have reported the maximum
performance obtained by employing each of the 10
pre-computed kernel matrices. In GE-SVM, we have
employed the regularized kernel versions, by employ-
ing Sl with k = 5, 10, 15 neighbors and Sw with
λm = 10−1, leading to a total of 40 kernel matrices.
Finally, these kernel matrices were employed by pro-
posed method, as well. Classification rates on both
datasets is shown in Table 2. As can be seen in both
cases, the proposed method greatly outperformed the
competition. The proposed method outperformed
MKL-SVM by 1.5%. This demonstrates the effec-
tiveness of the proposed method, for the case where
pre-computed kernel matrices have been employed.

Table 2: Classification rates (CR) in object recognition
datasets

Algorithm/Dataset CIFAR-100 Caltech101
SVM 73.20 66.17
GE-SVM 72.30 66.56
MKL-SVM 75.40 72.42
PROPOSED 79.80 73.39

4.3. Experiments in human action recognition

In our experiments in human action recognition,
we have employed the the i3DPost multi-view action

database [47], the IMPART Multi-modal/Multi-view
Dataset [48], the Olympic Sports [49] and the Holly-
wood3D [50] publicly available datasets.

In i3DPost and IMPART datasets, we have em-
ployed a 3-fold cross validation procedure, where we
have split the datasets in 3 mutually exclusive sets,
having 6/8 people for training purposes, and 2/8 for
testing in i3DPost dataset, and 2/3 and 1/3 in IM-
PART dataset, respectively. This procedure was re-
peated 3 times, and the reported performance is the
average obtained classification rate among the 3 folds.
In Hollywood 3D and Olympic Sports datasets, we
employed the standard training and test videos, pro-
vided by the dataset providers [49, 50, 51]. In or-
der to obtain vectorial video representations for each
video segment depicting each action, we have em-
ployed the dense trajectory-based video description
[52]. This video description calculates five descrip-
tor types, namely the Histogram of Oriented Gra-
dients, Histogram of Optical Flow, Motion Bound-
ary Histogram along direction x, Motion Boundary
Histogram along direction y and the normalized tra-
jectory coordinates on the trajectories of densely-
sampled video frame interest points that are tracked
for a number of consecutive video frames (7 frames
are used in our experiments). Thereby, each video
segment is then described by 5 vectors. We have
employed these video segment descriptors in order
to obtain five video segment representations by using
the Bag-of-Words model [53, 54], creating a video de-
scription of having 5 descriptors of 100, 500, 4000 and
4000 dimensions, for i3DPost, IMPART, Olympic
sports and Hollywood3D, respectively. In GE-SVM
and standard SVM methods, in order to fuse infro-
mation from all descriptors, we combined the 5 de-
scriptor types with kernel methods using a late fusion
approach [55], i.e.,:

k(Xi,Xj) = exp

(
−1

d
γd
∑
d

‖xd
i − xd

j‖22

)
, (22)

xd
i ∈ RD is a video feature vector for d = 5 (num-

ber of descriptor types) and γd = 2σ2
d is a parameter

scaling the Euclidean distance between xd
i and xd

j .
In MKL-SVM and the proposed method, besides the
fused kernel matrix, each separate kernel matrix con-
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taining data similarity from each descriptor type was
also given as input.

Experimental results in human action recognition
are drawn in Table 3. As can be observed, the pro-
posed method outperformed the competition in al-
most every case. Using MKL-SVM for fusing infor-
mation from the specific descriptor types provided
slightly improved classification performance in com-
parison with standard SVM. In addition, by observ-
ing the performance of GE-SVM, employing graph-
based regularization provided furthermore increased
classification performance. The proposed method
combined the performance gains by both worlds, con-
sisting itself superior from the competition.

Table 3: Classification rates (CR) in Human Action Recogni-
tion datasets

Algorithm/Dataset I3DPost IMPART Olympic Sports Hollywood 3D
SVM 94.39 85.32 73.13 29.87
GE-SVM 94.87 86.47 74.63 29.87
MKL-SVM 94.39 85.33 73.88 30.52
PROPOSED 95.51 85.75 74.63 32.14

4.4. Significance analysis

After obtaining the performance of the competing
methods in all experiments, we determined whether
the observed differences of the proposed method with
the competition are statistically significant, or not,
by using the implementation from [56, 57, 58]. To
this end, we have tested the null hypotheses that
all classifiers perform the same, using the Friedman’s
test. The mean ranks for each algorithm according
to their performance in all classification problems are
shown in Table 4. By employing 10 datasets and
4 classifiers, the degrees of freedom is equal to 27.
The Friedman statistic is equal to χ2

F = 16.14, and
the critical value was 7.81. Therefore, the null hy-
potheses that all classifiers perform the same, was
rejected. After employing the Nemenyi post-hoc pro-
cedure for pairwise comparison, using a significance
level of 95%, i.e., a = 0.05, the Critical Distance
(CD) was found at 1.48, which means that the pro-
posed method performed significantly better than all
competing methods. Moreover, we have also used the
Bergman-Hommel’s posthoc procedure, which ampli-
fies the test power by using an exhaustive sets of

hypothesis, i.e hypothesis that can be true at the
same time. The critical distance was calculated at
1.38. Therefore, the proposed method performs sig-
nificantly better than the competition.

Table 4: Statistical test details

Mean ranks SVM GE-SVM MKL-SVM Proposed
3.35 2.65 2.85 1.15

Posthoc Procedure Nemenyi Bergman-Hommel’s
α 0.05 0.0083
CD 1.48 1.38

5. Conclusion

We have presented a novel method for introduc-
ing multiplex data relationships to the SVM op-
timization process, by exploiting pairwise data in-
formation expressed in multiple graph structures.
Our experiments denoted that the proposed method
provided increased classification performance consis-
tently against related methods, in different visual
data classification problems. The improved classi-
fication accuracy was mainly achieved, due to the
exploitation of advanced graph-based regularization
settings in an optimal fashion, representing the mul-
timodal/multiplex image and video data characteris-
tics. Since the proposed method provided enhanced
classification performance using different descriptor
settings, it may perform well in other standard clas-
sification problems, as well.

Moreover, since the proposed method is a generic
formulation for Graph-based SVM methods and Mul-
tiple Kernel methods, evolution in both fields shall
favor the proposed method as well. That is, by in-
cluding advanced regularization settings using novel
graph combinations or improved Multiple Kernel
Learning solvers. This can also serve as a feature
research direction.
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