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ABSTRACT
A classification method that emphasizes on learning the hy-
perplane that separates the training data with the maximum
margin in a regularized space, is presented. In the proposed
method, this regularized space is derived by exploiting multi-
ple graph structures, in the SVM optimization process. Each
of the employed graph structure carries some information
concerning a geometric or semantic property about the train-
ing data, e.g., local neighborhood area and global geometric
data relationships. The proposed method introduces informa-
tion from each graph type to the standard SVM objective, as a
projection of the SVM hyperplane to such a direction, where
a specific property of the training data is highlighted. We
show that each data property can be encoded in a regularized
kernel matrix. Finally, response in the optimal classification
space can be obtained by exploiting a weighted combina-
tion of multiple regularized kernel matrices. Experimental
results in face recognition and object classification denote the
effectiveness of the proposed method.

Index Terms— Regularized Support Vector Machines,
face recognition, object recognition

1. INTRODUCTION

Face recognition and object recognition are classic computer
vision/pattern recognition classification problems that have
found numerous applications in industrial and research fields,
involving more and more sectors such as biometrics, virtual
reality, and more lately applied robotics e.g., unmanned aerial
vehicles. For the past two decades, the SVM classifier has
been one of the most important baseline methods for tackling
these tasks. The effectiveness of any classification method in-
cluding the SVM classifier, depends on three things: a) the
employed feature data representation, b) the suitability of the
adopted kernel function to the employed features and finally
c) the classifier discriminating ability.

Regarding features, recent work exploiting deep neural
network architectures have revolutionized the efficiency of
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the obtained data representation in several problems includ-
ing face [1, 2] and object recognition [3]. The resulting rep-
resentation obtained by a forward-pass of the training data to
specific layers of a pre-trained network can be used as feature
vectors for detecting and recognizing objects depicted in im-
ages and videos. Moreover, work on obtaining improved ker-
nel functions using Deep or Multiple Kernel Learning [4, 5, 6]
have been performed with promising results. However, while
feature vectors and kernel functions are rapidly improving the
classification potential of the standard SVM classifier, we ar-
gue that its discriminating ability can be improved even fur-
ther, by exploiting additional criteria in its optimization pro-
cess.

Our argument is supported by relevant research on SVM-
based methods, where it has been consistently shown that
the SVM classification performance can be enhanced, while
keeping the same initial feature data representation. This can
be achieved by incrorporating additional optimization criteria
to the SVM optimization process, e.g., discriminant learning
[7, 8, 9], manifold learning [10], or as shown more recently,
any geometric or semantic criteria that can modeled using
generic graph structures [11, 12, 13, 14]. The employed graph
structures that could be expressing intrinsic (within-class), or
between-class data relationships, have the effect of promot-
ing solutions in directions where the expressed property is
emphasized (e.g., low-variance directions). Motivated by the
success of graph-based SVM methods, we study the impact
of introducing more than one or two properties to the SVM
optimization problem.

In this paper, a classification method based on SVM, that
learns the hyperplane that separates the training data with
the maximum margin in a regularized space, where various
data properties are emphasized, is proposed. This regularized
space is derived by exploiting multiple graph structures in the
SVM optimization process. Each of the employed graph car-
ries some information concerning a geometric or semantic
property about the training data, e.g., global variance, local
neighborhood area. It is shown that each data property can be
encoded in a regularized kernel matrix. The optimal classifi-
cation space can be obtained by exploiting a weighted combi-
nation of multiple regularized kernel matrices. Therefore, the
proposed optimization problem can be modeled as a standard
Multiple Kernel Learning problem.



2. MODELING DATA RELATIONSHIPS IN GRAPH
STRUCTURES

Assume a dataset consisting of d−dimensional vectors xi ∈
RD, i = 1, . . . , N andX ∈ RD×N is the corresponding data-
matrix, that is employed to train a classifier. Pairwise prop-
erties within the training data can be expressed with set of
graph structures Gm = {X,Wm},m = 1, . . . ,M , where
the training data X form the graph vertices and the m−th
graph expresses the m−th property about the training data.
The matrix Wm is the corresponding graph weight matrix,
containing the weights of the connections between the train-
ing data for them−th property. Such pairwise properties may
include e.g., local geometric data information expressed by
kNN graphs, or global geometric data information expressed
by fully connected graphs.

For example, the neighborhoodNi of each vertex could be
containing the k most similar vectors to xi, and the weights
between the verticesW l

ij have been initiated with the follow-
ing heat kernel function:

W l
ij =

{
exp

(
−γ||xi − xj ||22

)
, if xj ∈ Ni

0, otherwise, (1)

where γ is a free parameter that scales the Euclidean distances
between the graph verticesxi andxj . The, the local geometry
of the training data is expressed with the matrix Sl:

Sl =
1

2

N∑
i=1

N∑
j=1

‖xi − xj‖2W l
ij = XLlX

T , (2)

whereLl ∈ RN×N is the corresponding graph Laplacian ma-
trix, defined by L = D −W , where D ∈ RN×N is the
weighted graph Degree matrix, i.e., a diagonal matrix having
elements Dii =

∑
j 6=iWij , i = 1, . . . , N .

The global geometry of the training data can be modeled
by extending the above defined graph along all training data,
i.e., by employing a fully connected graph (k = N ). Al-
ternatively, from a disciminant analysis perspective [15], a
definition of global geometric data relationships is the fol-
lowing. Items belonging to the same class (e.g., class c, c =
1, . . . , C) are connected in a fully connected graph Gw with
equal weights, as follows:

Ww
ij = 1/Nc, if yi = yj (3)

where Nc is the number of items belonging to the c−th class.
In fact, the corresponding matrix Sw that expresses global
geometric data relationships as in equation (2), is the within-
class scatter matrix:

Sw =

C∑
c=1

Nc∑
i=1

(xc
i − x̄c)(xc

i − x̄c)T =

= X

(
I −

C∑
c=1

1

Nc
ece

T
c

)
XT = XLwX

T , (4)

where Lw is the corresponding graph Laplacian matrix, c is
an index denoting if xi belongs to c−th class, i.e., yi = c, and
ec is a vector of ones corresponding to the positions where
yi = c, or zeros, otherwise.

3. LEARNING MULTIGRAPH REGULARIZATION
FOR SVM

The proposed method aims at generating the hyperplane w
that separates the training data with the maximum margin,
in a space where data relationships expressed with multiple
graphs have been emphasized. The space where each prop-
erty is emphasized can be implicitly obtained, by combining
SVM hyperplanes wm that have been regularized with the
corresponding matrixSm,m = 1, . . . ,M , encoding informa-
tion from the m-th graph. Moreover, since we would like to
exploit multiple data properties, we also demand to learn their
combination in an optimal manner. To this end, we introduce
a vector µ ∈ RM , such that

∑M
m=1 µm = 1, that controls

the contribution of each data property to the final regulariza-
tion effect. Therefore, the we propose to optimize for each
hyperplane wm and the parameters µm, at the same time, as
follows:

min
{w},ξ,b,µ

1

2

M∑
m=1

1

µm

(
‖wm‖2 +wT

mSmwm

)
+ c

N∑
i=1

ξi + b,

(5)

s. t. yi
(
wT

mxi + b
)
≤ 1− ξi, i = 1, . . . , N,

ξi ≥ 0,

M∑
m=1

µm = 1,

where ξi are the slack variables, b is the bias term and c > 0
is the SVM hyperparameter that needs to be tuned in order
to provide the best compromise between training error and
generalization performance (where a value c = 0 corresponds
to hard margin SVM).

The above defined optimization problem can be solved
by obtaining the equivalent dual problem, expressed with the
Lagrangian function L and the Lagrange multipliers αi corre-
sponding to its constraints. By setting the partial derivatives
of L with respect to wm, ξ, b equal to zero, and then by re-
placing back in L, we obtain an optimization problem of the
following form:

max
α

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjqij

s. t. 0 ≤ αi ≤ c (6)

where qij are the elements of a matrix Q ∈ RN×N , that con-
tains the data similarity between the training data in the regu-
larized space, as follows:

Q = xT
i

(
M∑

m=1

µm (I + Sm)
−1

)
xj (7)



or equivalently:

Q =

(
M∑

m=1

µmx
T
i (I + Sm)

−1
xj

)
=

M∑
m=1

µmκ̃m(xi,xj),

(8)
where K̃m is a similarity matrix that contains data similar-
ity in the space where only the m−th data property have ex-
pressed. As can be observed, the proposed optimization prob-
lem can thereby be expressed as a Multiple Kernel Learning
SVM problem:

max
α

min
µ

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj

M∑
m=1

µmκ̃m(xi,xj)

(9)

s. t. 0 ≤ αi ≤ c and
M∑

m=1

µm = 1.

Solutions in the kernel space can be obtained by replac-
ing the standard data representations xi with the outputs of a
mapping function φ(xi) 7→ F . Although the data represen-
tations in F are of arbitrary dimensionality, only similarity in
that space is required to be calculated explicitly for SVM clas-
sification purposes. By working in spaces of arbitrary dimen-
sionality, the matrices Sm become of arbitrary dimensional-
ity as well. Thankfully, the inversion (I + Sm)

−1 can still
be obtained, by exploiting the Sherman-Morrison-Woodbury
identity:(
I + ΦLmΦT

)−1
= I −Φ

(
L−1m + ΦTΦ

)−1
ΦT , (10)

where Φ = [φ(x1), . . . , φ(xN )]T is a matrix that contains
the data representations in the feature space. Similarity in the
regularized space, that is required to be expressed with the
matrices K̃m, is calculated explicitly as follows:

K̃ =
[
I −

(
Lm +K−1

)−1
Lm

]
K, (11)

where K = ΦTΦ is the standard kernel matrix obtained by
e.g., applying the RBF kernel function.

In order to solve the optimization problem defined in (9),
any Multiple Kernel Learning SVM method can be employed
[5, 16]. We have employed [16] in all our experiments to this
end, since it outperforms other widely adopted MKL meth-
ods e.g., [17, 18] in related classification problems, by pro-
viding an efficient compromise between sparse solutions and
fast convergence. That is, the min-max optimization problem
is broken into two quadratic programming optimization prob-
lems solved sequentially, one for the standard SVM, and a
separate soft-margin optimization one for determining the pa-
rameters µm. For more information, the reader is referred to
[16]. Finally, in order to classify a test sample x, we employ
the following decision function:

f(x) =

N∑
i=1

yiαi

M∑
m=1

µmκ̃m(xi,x) + b. (12)

The proposed method is able to include several graphs for
regularization purposes, in the form of multiple single-graph
regularized kernels. Thereby, the optimization problem is for-
mulated as a MKL-SVM optimization problem. The advan-
tage of this approach, is that it does not require fine tuning
of the additional parameters that are introduced to control the
amount of regularization. The effect of the each graph hyper-
parameters is implicitly determined only by optimally calcu-
lating the kernel contribution parameters µm, inside a sepa-
rate optimization problem.

Additionally, the proposed formulation may serve as the
general SVM formulation case, since related methods may
be represented as special cases of the proposed method, by
replacing the base kernel matrix inputs, with different ma-
trices. For example, by replacing the derived kernel matrix
Q with the standard SVM kernel matrix K and µ = 1, the
proposed method degenerates to standard SVM. By using
a set of standard SVM kernel matrices derived by employ-
ing several mapping functions, or similar mapping functions
with different parameters, the proposed method represents
the generalized Multiple Kernel Learning [5] formulation.
Finally, by introducing only a single graph in the SVM op-
timization process, the proposed method degenerates to the
Graph-Embedded SVM [11] formulation.

4. EXPERIMENTS

In order to evaluate the performance of the proposed method,
we have conducted experiments in publicly available datasets
for face recognition and object classification. In our ex-
periments in face recognition, we have employed the Pub-
Fig+LFW [19], AR [20], Yale [21] and ORL [22] datasets. In
our object classification experiments, we have employed the
CIFAR-100 [23] and Caltech101 [24] datasets. The employed
datasets were carefully selected to demonstrate the effective-
ness of the proposed method using different feature vector
settings, i.e., pre-extracted feature vectors (PubFig+LFW),
features having minimal preprocessing i.e., pixel luminosities
(AR, Yale and ORL), pre-extracted deep features from [3]
(CIFAR-100) and pre-computed kernel matrices [25] (Cal-
tech101). Since all employed datasets are well balanced
in terms of instances per class, for both training and test-
ing purposes, the Classification Rate (CR) was employed as
performance metric.

In order to construct our base kernels in all our experi-
ments except Caltech101 (where we already had the precom-
puted kernels), we have employed the RBF−χ2 kernel ma-
trix:

k(xi,xj) = exp
(
−γ‖xi − xj‖22

)
, (13)

where the optimal γ for every competing method was deter-
mined from a set of predefined values using cross validation.
The regularized kernel matrices K̃ were obtained using Sl

and Sw, as described in Section 2, for different values of γ.



For comparison reasons, along with the proposed method,
we have also trained the standard Multiple Kernel Learning
SVM (MKL-SVM) [16], using standard RBF kernels. More-
over, we also report the performance of the standard Graph-
Embedded SVM (GE-SVM) [11], a standard SVM variant
that employs a single regularized kernel matrix K̃, which was
in essence the best performing single base kernel of our pro-
posed method. The same SVM solver was employed for all
methods [26], and the parameter settings were also set to be
equal for all methods, where applicable. Our experimental
platform was a PC with 32GB of RAM on a i7 processor, us-
ing a Matlab implementation.

Experimental results are drawn in Tables 1 and 2 for face
recognition and object classification, respectively. As can
be seen, the proposed method outperformed the competing
methods in every case, in terms of classification accuracy.
More specifically, by observing the performance of all com-
peting methods in PubFig+LFW dataset, whose feature vec-
tors include information from hand-crafted descriptors, em-
ploying Multiple Kernel matrices seem to have been benefi-
cial to classification performance. In such case, the extracted
features lie in multiple distributions, and cannot be adequately
modeled by a single distribution (i.e., the GE-SVM case). The
performance of MKL-SVM denoted that exploiting multiple
distributions for modeling data similarity was beneficial to
performance in this case. The proposed method outperformed
the competition, by exploiting the additional global and local
geometric particularities of each class, modeled by the added
graph structures. This information acted as an advanced reg-
ularizer to the solution, offering more accurate feature repre-
sentation, in comparison with the competition.

In our experiments in ORL, YALE and AR, where we
have employed simple pixel luminosities as feature vectors,
we observed that employing multiple similar RBF kernel ma-
trices, seem to have not influenced positively the classification
performance, maybe related to overfitting issues. This effect
is supported by the performance of GE-SVM, which outper-
formed MKL-SVM, by having a single graph regularizing the
obtained classification space. However, the proposed method
was able to alleviate the negative overfitting effects, by opti-
mally determining the most efficient regularized kernel com-
bination.

Finally, in our experiments in object recognition, the pro-
posed method outpefromed the competition, again. Here
we also note that the reported Caltech101 baseline MKL-
SVM performance in [25] for the exact same kernels was
71.1%. Our employed baseline MKL-SVM method [16] out-
performed this performance, obtaining a classification rate of
72.30%. Our proposed method outperformed MKL-SVM by
1.5%. This demonstrates the effectiveness of the proposed
method, for the cases where deep features or pre-computed
kernel matrices have been employed.

Table 1: Classification rates (CR) in Face Recognition

Algorithm/Dataset PubFig+LFW ORL AR Yale
GE-SVM 34.35 98.75 99.19 97.94
MKL-SVM 84.17 98.75 90.57 96.08
PROPOSED 88.77 99.25 99.42 98.06

Table 2: Classification rates (CR) in object recognition

Algorithm/Dataset CIFAR-100 Caltech101
GE-SVM 72.30 66.56
MKL-SVM 75.40 72.42
PROPOSED 79.80 73.39

5. CONCLUSION

We described a novel method for introducing multiple pair-
wise data relationships represented in graph structures, to
the SVM optimization process. The proposed optimization
problem can be solved by exploiting generic Multiple-kernel
learning SVM implementations. We have obtained increased
classification performance consistently against related meth-
ods, in face recognition and object recognition classification
problems. The reason for adopting increased performance is
the exploitation of optimal kernel matrix regularization, spec-
ified for the SVM classification problem. Since the proposed
method provided enhanced classification performance using
different descriptor settings, we expect that it will perform
well in other classification problems, as well.
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